Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Methods Mol Biol ; 2751: 81-94, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38265711

RESUMO

Acidovorax citrulli is one of the most important pathogens of cucurbit crops, mainly melon and watermelon. Although A. citrulli is able to infect all aerial parts of the plant, fruits are highly sensitive to the bacterium. Therefore, the disease is known as bacterial fruit blotch (BFB). The unavailability of effective tools for managing BFB, including the lack of resistant varieties, exacerbates the threat this disease poses to the cucurbit industry. However, despite the economic importance of BFB, still little is known about basic aspects of A. citrulli-plant interactions. Here, we present diverse techniques that have recently been developed for investigation of basic aspects of BFB, including identification of virulence determinants of the pathogen.


Assuntos
Comamonadaceae , Cucurbitaceae , Virulência , Fatores de Virulência
2.
Methods Mol Biol ; 2751: 219-228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38265719

RESUMO

Rhizobia are a group of soil proteobacteria that are able to establish a symbiotic interaction with legumes. These bacteria are capable to fix atmospheric nitrogen into ammonia within specific plant root organs called nodules. The rhizobia-legume interaction is established by a complex molecular dialogue that starts with flavonoids exudated by the plant roots. In response, signaling molecules known as Nod factors (NFs) are secreted by the bacteria. These factors are sensed by specific plant receptors that trigger a downstream signaling cascade leading to rhizobium-specific intracellular colonization of the root hair via the formation of infection threads and the eventual development of nodules on roots. In these organs, rhizobia can fix nitrogen from the atmosphere for the plant in exchange for photosynthates and the appropriate environment for nitrogen fixation. Recently, it has been demonstrated that extracellular membrane vesicles (EMVs) produced by some rhizobia carry NFs. EMVs are proteolipidic structures that are secreted to the milieu from the bacterial membranes and are involved in several important biological processes, including intercellular communication. Thus far, little is known about rhizobia vesicles, and further studies are needed to understand their functions, including their role as transporting vessels of signaling molecules during the process of symbiosis. Here, we present a detailed protocol to isolate high-purity EMVs from free-living cultured rhizobia, test their integrity, and quantify their abundance.


Assuntos
Fabaceae , Rhizobium , Condições Sociais , Membranas , Transporte Biológico , Nitrogênio
3.
Methods Mol Biol ; 2751: 229-236, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38265720

RESUMO

Extracellular-membrane vesicles (EMVs) are spherical buds of the extracellular membrane, commonly produced by Gram-negative bacteria, known to mediate intricate inter-kingdom communication. In this context, comprehensive research dissecting the role of EMVs in one of the most complex nature-occurring molecular dialogues, rhizobium-legume symbiosis, has been so far neglected. During the different stages of the symbiotic process, rhizobia and their host plants establish a very specific and controlled intercellular trafficking of signal molecules. Thus, as conveyors of a broad range of molecules into the target cell, EMVs are gaining weight in the field. Here, we describe a detailed protocol to isolate EMVs from bacteroids of legume nodules, opening a new door for discovering new authors of the symbiotic process.


Assuntos
Vesículas Extracelulares , Fabaceae , Rhizobium , Membranas , Simbiose , Verduras
4.
Plant J ; 117(2): 516-540, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37864805

RESUMO

Bacterial fruit blotch, caused by Acidovorax citrulli, is a serious disease of melon and watermelon. The strains of the pathogen belong to two major genetic groups: group I strains are strongly associated with melon, while group II strains are more aggressive on watermelon. A. citrulli secretes many protein effectors to the host cell via the type III secretion system. Here we characterized AopW1, an effector that shares similarity to the actin cytoskeleton-disrupting effector HopW1 of Pseudomonas syringae and with effectors from other plant-pathogenic bacterial species. AopW1 has a highly variable region (HVR) within amino acid positions 147 to 192, showing 14 amino acid differences between group I and II variants. We show that group I AopW1 is more toxic to yeast and Nicotiana benthamiana cells than group II AopW1, having stronger actin filament disruption activity, and increased ability to induce cell death and reduce callose deposition. We further demonstrated the importance of some amino acid positions within the HVR for AopW1 cytotoxicity. Cellular analyses revealed that AopW1 also localizes to the endoplasmic reticulum, chloroplasts, and plant endosomes. We also show that overexpression of the endosome-associated protein EHD1 attenuates AopW1-induced cell death and increases defense responses. Finally, we show that sequence variation in AopW1 plays a significant role in the adaptation of group I and II strains to their preferred hosts, melon and watermelon, respectively. This study provides new insights into the HopW1 family of bacterial effectors and provides first evidence on the involvement of EHD1 in response to biotic stress.


Assuntos
Citrullus , Comamonadaceae , Cucurbitaceae , Adaptação ao Hospedeiro , Doenças das Plantas/microbiologia , Citrullus/genética , Aminoácidos
5.
Microb Biotechnol ; 16(12): 2223-2235, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37530752

RESUMO

The United Nations heralds a world population exponential increase exceeding 9.7 billion by 2050. This poses the challenge of covering the nutritional needs of an overpopulated world by the hand of preserving the environment. Extensive agriculture practices harnessed the employment of fertilizers and pesticides to boost crop productivity and prevent economic and harvest yield losses attributed to plagues and diseases. Unfortunately, the concomitant hazardous effects stemmed from such agriculture techniques are cumbersome, that is, biodiversity loss, soils and waters contaminations, and human and animal poisoning. Hence, the so-called 'green agriculture' research revolves around designing novel biopesticides and plant growth-promoting bio-agents to the end of curbing the detrimental effects. In this field, microbe-plant interactions studies offer multiple possibilities for reshaping the plant holobiont physiology to its benefit. Along these lines, bacterial extracellular membrane vesicles emerge as an appealing molecular tool to capitalize on. These nanoparticles convey a manifold of molecules that mediate intricate bacteria-plant interactions including plant immunomodulation. Herein, we bring into the spotlight bacterial extracellular membrane vesicle engineering to encase immunomodulatory effectors into their cargo for their application as biocontrol agents. The overarching goal is achieving plant priming by deploying its innate immune responses thereby preventing upcoming infections.


Assuntos
Desenvolvimento Vegetal , Plantas , Humanos , Desenvolvimento Vegetal/fisiologia , Plantas/microbiologia , Agricultura/métodos , Solo , Produção Agrícola , Antígenos de Bactérias
6.
Biology (Basel) ; 12(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36829427

RESUMO

(1) Background: Some rhizobia, such as Rhizobium tropici CIAT 899, activate nodulation genes when grown under osmotic stress. This work aims to determine whether this phenomenon also takes place in Sinorhizobium fredii HH103. (2) Methods: HH103 was grown with and without 400 mM mannitol. ß-galactosidase assays, nodulation factor extraction, purification and identification by mass spectrometry, transcriptomics by RNA sequencing, motility assays, analysis of acyl-homoserine lactones, and indole acetic acid quantification were performed. (3) Results: Non-ionic osmotic stress induced the production of nodulation factors. Forty-two different factors were detected, compared to 14 found in the absence of mannitol. Transcriptomics indicated that hundreds of genes were either activated or repressed upon non-ionic osmotic stress. The presence of 400 mM mannitol induced the production of indole acetic acid and acyl homoserine lactones, abolished swimming, and promoted surface motility. (4) Conclusions: In this work, we show that non-ionic stress in S. fredii HH103, caused by growth in the presence of 400 mM mannitol, provokes notable changes not only in gene expression but also in various bacterial traits, including the production of nodulation factors and other symbiotic signals.

7.
Front Plant Sci ; 14: 1322435, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38186594

RESUMO

Introduction: The establishment of the rhizobium-legume nitrogen-fixing symbiosis relies on the interchange of molecular signals between the two symbionts. We have previously studied by RNA-seq the effect of the symbiotic regulators NodD1, SyrM, and TtsI on the expression of the symbiotic genes (the nod regulon) of Sinorhizobium fredii HH103 upon treatment with the isoflavone genistein. In this work we have further investigated this regulatory network by incorporating new RNA-seq data of HH103 mutants in two other regulatory genes, nodD2 and nolR. Both genes code for global regulators with a predominant repressor effect on the nod regulon, although NodD2 acts as an activator of a small number of HH103 symbiotic genes. Methods: By combining RNA-seq data, qPCR experiments, and b-galactosidase assays of HH103 mutants harbouring a lacZ gene inserted into a regulatory gene, we have analysed the regulatory relations between the nodD1, nodD2, nolR, syrM, and ttsI genes, confirming previous data and discovering previously unknown relations. Results and discussion: Previously we showed that HH103 mutants in the nodD2, nolR, syrM, or ttsI genes gain effective nodulation with Lotus japonicus, a model legume, although with different symbiotic performances. Here we show that the combinations of mutations in these genes led, in most cases, to a decrease in symbiotic effectiveness, although all of them retained the ability to induce the formation of nitrogen-fixing nodules. In fact, the nodD2, nolR, and syrM single and double mutants share a set of Nod factors, either overproduced by them or not generated by the wild-type strain, that might be responsible for gaining effective nodulation with L. japonicus.

8.
J Exp Bot ; 73(19): 6931-6941, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35901852

RESUMO

In the symbiotic associations between rhizobia and legumes, the NodD regulators orchestrate the transcription of the specific nodulation genes. This set of genes is involved in the synthesis of nodulation factors, which are responsible for initiating the nodulation process. Rhizobium tropici CIAT 899 is the most successful symbiont of Phaseolus vulgaris and can nodulate a variety of legumes. Among the five NodD regulators present in this rhizobium, only NodD1 and NodD2 seem to have a role in the symbiotic process. However, the individual role of each NodD in the absence of the other proteins has remained elusive. In this work, we show that the CIAT 899 NodD2 does not require activation by inducers to promote the synthesis of nodulation factors. A CIAT 899 strain overexpressing nodD2, but lacking all additional nodD genes, can nodulate three different legumes as efficiently as the wild type. Interestingly, CIAT 899 NodD2-mediated gain of nodulation can be extended to another rhizobial species, since its overproduction in Sinorhizobium fredii HH103 not only increases the number of nitrogen-fixing nodules in two host legumes but also results in nodule development in incompatible legumes. These findings potentially open exciting opportunities to develop rhizobial inoculants and increase legume crop production.


Assuntos
Phaseolus , Rhizobium tropici , Rhizobium , Rhizobium tropici/genética , Simbiose/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Phaseolus/metabolismo
9.
Plant J ; 111(1): 231-249, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35488514

RESUMO

Phosphoenolpyruvate carboxylase (PEPC) is a carboxylating enzyme with important roles in plant metabolism. Most studies in C4 plants have focused on photosynthetic PEPC, but less is known about non-photosynthetic PEPC isozymes, especially with respect to their physiological functions. In this work, we analyzed the precise roles of the sorghum (Sorghum bicolor) PPC3 isozyme by the use of knock-down lines with the SbPPC3 gene silenced (Ppc3 lines). Ppc3 plants showed reduced stomatal conductance and plant size, a delay in flowering time, and reduced seed production. In addition, silenced plants accumulated stress indicators such as Asn, citrate, malate, and sucrose in roots and showed higher citrate synthase activity, even in control conditions. Salinity further affected stomatal conductance and yield and had a deeper impact on central metabolism in silenced plants compared to wild type, more notably in roots, with Ppc3 plants showing higher nitrate reductase and NADH-glutamate synthase activity in roots and the accumulation of molecules with a higher N/C ratio. Taken together, our results show that although SbPPC3 is predominantly a root protein, its absence causes deep changes in plant physiology and metabolism in roots and leaves, negatively affecting maximal stomatal opening, growth, productivity, and stress responses in sorghum plants. The consequences of SbPPC3 silencing suggest that this protein, and maybe orthologs in other plants, could be an important target to improve plant growth, productivity, and resistance to salt stress and other stresses where non-photosynthetic PEPCs may be implicated.


Assuntos
Fosfoenolpiruvato Carboxilase , Sorghum , Grão Comestível/metabolismo , Fosfoenolpiruvato Carboxilase/genética , Fosfoenolpiruvato Carboxilase/metabolismo , Salinidade , Estresse Salino , Sorghum/metabolismo
10.
Microorganisms ; 10(1)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35056588

RESUMO

Rhizobial NodD proteins and appropriate flavonoids induce rhizobial nodulation gene expression. In this study, we show that the nodD1 gene of Sinorhizobium fredii HH103, but not the nodD2 gene, can restore the nodulation capacity of a double nodD1/nodD2 mutant of Rhizobium tropici CIAT 899 in bean plants (Phaseolus vulgaris). S. fredii HH103 only induces pseudonodules in beans. We have also studied whether the mutation of different symbiotic regulatory genes may affect the symbiotic interaction of HH103 with beans: ttsI (the positive regulator of the symbiotic type 3 protein secretion system), and nodD2, nolR and syrM (all of them controlling the level of Nod factor production). Inactivation of either nodD2, nolR or syrM, but not that of ttsI, affected positively the symbiotic behavior of HH103 with beans, leading to the formation of colonized nodules. Acetylene reduction assays showed certain levels of nitrogenase activity that were higher in the case of the nodD2 and nolR mutants. Similar results have been previously obtained by our group with the model legume Lotus japonicus. Hence, the results obtained in the present work confirm that repression of Nod factor production, provided by either NodD2, NolR or SyrM, prevents HH103 to effectively nodulate several putative host plants.

11.
Res Microbiol ; 172(7-8): 103878, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34492337

RESUMO

Bdellovibrio bacteriovorus, a Gram-negative predatory bacterium belonging to the Bdellovibrio and like organisms (BALOs), predates on Gram-negative bacteria. BALO strains differ in prey range but so far, the genetic basis of resistance against BALO predation is hardly understood. We developed a loss-of-function approach to screen for sensitive mutants in a library of strain M6, a predation-resistant strain of the plant pathogen Acidovorax citrulli. The screen is based on tracking the growth of a B. bacteriovorus strain expressing the fluorescent reporter Tdtomato in mutant pools to reveal predation-sensitive variants. Two independent loci were identified in mutant strains exhibiting significant levels of susceptibility to the predator. Genes in the two loci were analysed using both protein sequence homology and protein structure modeling. Both were secretion-related proteins and thus associated to the bacterial cell wall. Successful complementation of gspK, a gene encoding for a minor pseudopilin protein confirmed the involvement of the type II secretion system in A. citrulli M6 resistance. This proof of concept study shows that our approach can identify key elements of the BALO-prey interaction, and it validates the hypothesis that mutational changes in a single gene can drastically impact prey resistance to BALO predation.


Assuntos
Proteínas de Bactérias/metabolismo , Bdellovibrio bacteriovorus/fisiologia , Comamonadaceae/fisiologia , Interações Microbianas , Sistemas de Secreção Tipo II/fisiologia , Proteínas de Bactérias/genética , Bdellovibrio bacteriovorus/crescimento & desenvolvimento , Comamonadaceae/genética , Genes Bacterianos , Mutagênese Insercional , Mutação , Sistemas de Secreção Tipo II/genética
12.
Environ Microbiol ; 23(4): 1837-1841, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33306279

RESUMO

The rhizobium-legume symbiosis is the best-understood plant-microbe association. The high degree of specificity observed in this relationship is supported by a complex exchange of signals between the two components of the symbiosis. Findings reported in last years indicate that multiple molecular mechanisms, such as the production of a particular set of nodulation factors at a very specific concentration or a suitable arsenal of effectors secreted through the type III secretion system, have been adjusted during evolution to ensure and optimize the recognition of specific rhizobial strains by its legume host. Qualitative or quantitative changes in the production of these symbiotic molecular determinants are detrimental for nodulation with its natural host but, in some cases, can also result beneficial for the rhizobium since it extends the nodulation host-range to other legumes. Potential repercussion of the extension in the nodulation host-range of rhizobia is discussed.


Assuntos
Fabaceae , Rhizobium , Especificidade de Hospedeiro , Nodulação , Rhizobium/genética , Simbiose , Sistemas de Secreção Tipo III
13.
Appl Environ Microbiol ; 86(19)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709725

RESUMO

Rhizobium tropici CIAT 899 is a broad-host-range rhizobial strain that establishes symbiotic interactions with legumes and tolerates different environmental stresses such as heat, acidity, or salinity. This rhizobial strain produces a wide variety of symbiotically active nodulation factors (NF) induced not only by the presence of plant-released flavonoids but also under osmotic stress conditions through the LysR-type transcriptional regulators NodD1 (flavonoids) and NodD2 (osmotic stress). However, the activation of NodD2 under high-osmotic-stress conditions remains elusive. Here, we have studied the role of a new AraC-type regulator (named as OnfD) in the symbiotic interaction of R. tropici CIAT 899 with Phaseolus vulgaris and Lotus plants. We determined that OnfD is required under salt stress conditions for the transcriptional activation of the nodulation genes and therefore the synthesis and export of NF, which are required for a successful symbiosis with P. vulgaris Moreover, using bacterial two-hybrid analysis, we demonstrated that the OnfD and NodD2 proteins form homodimers and OnfD/NodD2 form heterodimers, which could be involved in the production of NF in the presence of osmotic stress conditions since both regulators are required for NF synthesis in the presence of salt. A structural model of OnfD is presented and discussed.IMPORTANCE The synthesis and export of rhizobial NF are mediated by a conserved group of LysR-type regulators, the NodD proteins. Here, we have demonstrated that a non-LysR-type regulator, an AraC-type protein, is required for the transcriptional activation of symbiotic genes and for the synthesis of symbiotically active NF under salt stress conditions.


Assuntos
Fator de Transcrição AraC/genética , Proteínas de Bactérias/genética , Lotus/microbiologia , Phaseolus/microbiologia , Rhizobium tropici/genética , Simbiose/genética , Fator de Transcrição AraC/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Rhizobium tropici/metabolismo , Estresse Salino/genética , Ativação Transcricional/genética
14.
J Exp Bot ; 71(19): 6043-6056, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32589709

RESUMO

The broad-host-range bacterium Sinorhizobium fredii HH103 cannot nodulate the model legume Lotus japonicus Gifu. This bacterium possesses a type III secretion system (T3SS), a specialized secretion apparatus used to deliver effector proteins (T3Es) into the host cell cytosol to alter host signaling and/or suppress host defence responses to promote infection. However, some of these T3Es are recognized by specific plant receptors and hence trigger a strong defence response to block infection. In rhizobia, T3Es are involved in nodulation efficiency and host-range determination, and in some cases directly activate host symbiosis signalling in a Nod factor-independent manner. In this work, we show that HH103 RifR T3SS mutants, unable to secrete T3Es, gain nodulation with L. japonicus Gifu through infection threads, suggesting that plant recognition of a T3E could block the infection process. To identify the T3E involved, we performed nodulation assays with a collection of mutants that affect secretion of each T3E identified in HH103 RifR so far. The nopC mutant could infect L. japonicus Gifu by infection thread invasion and switch the infection mechanism in Lotus burttii from intercellular infection to infection thread formation. Lotus japonicus gene expression analysis indicated that the infection-blocking event occurs at early stages of the symbiosis.


Assuntos
Lotus , Sinorhizobium fredii , Sinorhizobium , Proteínas de Bactérias/genética , Nodulação , Sinorhizobium fredii/genética , Simbiose , Sistemas de Secreção Tipo III
15.
Microorganisms ; 8(1)2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906451

RESUMO

Quorum sensing (QS) is a bacterial cell-to-cell signaling mechanism that collectively regulates and synchronizes behaviors by means of small diffusible chemical molecules. In rhizobia, QS systems usually relies on the synthesis and detection of N-acyl-homoserine lactones (AHLs). In the model bacterium Sinorhizobium meliloti functions regulated by the QS systems TraI-TraR and SinI-SinR(-ExpR) include plasmid transfer, production of surface polysaccharides, motility, growth rate and nodulation. These systems are also present in other bacteria of the Sinorhizobium genus, with variations at the species and strain level. In Sinorhizobium fredii NGR234 phenotypes regulated by QS are plasmid transfer, growth rate, sedimentation, motility, biofilm formation, EPS production and copy number of the symbiotic plasmid (pSym). The analysis of the S. fredii HH103 genomes reveal also the presence of both QS systems. In this manuscript we characterized the QS systems of S. fredii HH103, determining that both TraI and SinI AHL-synthases proteins are responsible of the production of short- and long-chain AHLs, respectively, at very low and not physiological concentrations. Interestingly, the main HH103 luxR-type genes, expR and traR, are split into two ORFs, suggesting that in S. fredii HH103 the corresponding carboxy-terminal proteins, which contain the DNA-binding motives, may control target genes in an AHL-independent manner. The presence of a split traR gene is common in other S. fredii strains.

16.
Mol Plant Pathol ; 21(1): 17-37, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31643123

RESUMO

The cucurbit pathogenic bacterium Acidovorax citrulli requires a functional type III secretion system (T3SS) for pathogenicity. In this bacterium, as with Xanthomonas and Ralstonia spp., an AraC-type transcriptional regulator, HrpX, regulates expression of genes encoding T3SS components and type III-secreted effectors (T3Es). The annotation of a sequenced A. citrulli strain revealed 11 T3E genes. Assuming that this could be an underestimation, we aimed to uncover the T3E arsenal of the A. citrulli model strain, M6. Thorough sequence analysis revealed 51 M6 genes whose products are similar to known T3Es. Furthermore, we combined machine learning and transcriptomics to identify novel T3Es. The machine-learning approach ranked all A. citrulli M6 genes according to their propensity to encode T3Es. RNA-Seq revealed differential gene expression between wild-type M6 and a mutant defective in HrpX: 159 and 28 genes showed significantly reduced and increased expression in the mutant relative to wild-type M6, respectively. Data combined from these approaches led to the identification of seven novel T3E candidates that were further validated using a T3SS-dependent translocation assay. These T3E genes encode hypothetical proteins that seem to be restricted to plant pathogenic Acidovorax species. Transient expression in Nicotiana benthamiana revealed that two of these T3Es localize to the cell nucleus and one interacts with the endoplasmic reticulum. This study places A. citrulli among the 'richest' bacterial pathogens in terms of T3E cargo. It also revealed novel T3Es that appear to be involved in the pathoadaptive evolution of plant pathogenic Acidovorax species.


Assuntos
Comamonadaceae/genética , Genes Bacterianos , Sistemas de Secreção Tipo III/genética , Proteínas de Bactérias/genética , Translocação Bacteriana , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Aprendizado de Máquina , Anotação de Sequência Molecular , RNA-Seq , Regulon , Fatores de Transcrição/genética
17.
Front Microbiol ; 10: 1400, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281298

RESUMO

Acidovorax citrulli is the causal agent of bacterial fruit blotch (BFB), a serious threat to cucurbit crop production worldwide. Based on genetic and phenotypic properties, A. citrulli strains are divided into two major groups: group I strains have been generally isolated from melon and other non-watermelon cucurbits, while group II strains are closely associated with watermelon. In a previous study, we reported the genome of the group I model strain, M6. At that time, the M6 genome was sequenced by MiSeq Illumina technology, with reads assembled into 139 contigs. Here, we report the assembly of the M6 genome following sequencing with PacBio technology. This approach not only allowed full assembly of the M6 genome, but it also revealed the occurrence of a ∼53 kb plasmid. The M6 plasmid, named pACM6, was further confirmed by plasmid extraction, Southern-blot analysis of restricted fragments and obtention of M6-derivative cured strains. pACM6 occurs at low copy numbers (average of ∼4.1 ± 1.3 chromosome equivalents) in A. citrulli M6 and contains 63 open reading frames (ORFs), most of which (55.6%) encoding hypothetical proteins. The plasmid contains several genes encoding type IV secretion components, and typical plasmid-borne genes involved in plasmid maintenance, replication and transfer. The plasmid also carries an operon encoding homologs of a Fic-VbhA toxin-antitoxin (TA) module. Transcriptome data from A. citrulli M6 revealed that, under the tested conditions, the genes encoding the components of this TA system are among the highest expressed genes in pACM6. Whether this TA module plays a role in pACM6 maintenance is still to be determined. Leaf infiltration and seed transmission assays revealed that, under tested conditions, the loss of pACM6 did not affect the virulence of A. citrulli M6. We also show that pACM6 or similar plasmids are present in several group I strains, but absent in all tested group II strains of A. citrulli.

18.
PLoS One ; 14(3): e0213298, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30917160

RESUMO

The symbiosis between rhizobia and legumes is characterized by a complex molecular dialogue in which the bacterial NodD protein plays a major role due to its capacity to activate the expression of the nodulation genes in the presence of appropiate flavonoids. These genes are involved in the synthesis of molecules, the nodulation factors (NF), responsible for launching the nodulation process. Rhizobium tropici CIAT 899, a rhizobial strain that nodulates Phaseolus vulgaris, is characterized by its tolerance to multiple environmental stresses such as high temperatures, acidity or elevated osmolarity. This strain produces nodulation factors under saline stress and the same set of CIAT 899 nodulation genes activated by inducing flavonoids are also up-regulated in a process controlled by the NodD2 protein. In this paper, we have studied the effect of osmotic stress (high mannitol concentrations) on the R. tropici CIAT 899 transcriptomic response. In the same manner as with saline stress, the osmotic stress mediated NF production and export was controlled directly by NodD2. In contrast to previous reports, the nodA2FE operon and the nodA3 and nodD1 genes were up-regulated with mannitol, which correlated with an increase in the production of biologically active NF. Interestingly, in these conditions, this regulatory protein controlled not only the expression of nodulation genes but also the expression of other genes involved in protein folding and synthesis, motility, synthesis of polysaccharides and, surprinsingly, nitrogen fixation. Moreover, the non-metabolizable sugar dulcitol was also able to induce the NF production and the activation of nod genes in CIAT 899.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Pressão Osmótica , Rhizobium tropici/genética , Proteínas de Bactérias/genética , Diuréticos Osmóticos/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala , Manitol/farmacologia , Rhizobium tropici/efeitos dos fármacos , Rhizobium tropici/crescimento & desenvolvimento , Rhizobium tropici/metabolismo , Ativação Transcricional
19.
Environ Microbiol ; 21(5): 1718-1739, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30839140

RESUMO

Sinorhizobium fredii HH103 RifR , a broad-host-range rhizobial strain, forms ineffective nodules with Lotus japonicus but induces nitrogen-fixing nodules in Lotus burttii roots that are infected by intercellular entry. Here we show that HH103 RifR nolR or nodD2 mutants gain the ability to induce infection thread formation and to form nitrogen-fixing nodules in L. japonicus Gifu. Microscopy studies showed that the mode of infection of L. burttii roots by the nodD2 and nolR mutants switched from intercellular entry to infection threads (ITs). In the presence of the isoflavone genistein, both mutants overproduced Nod-factors. Transcriptomic analyses showed that, in the presence of Lotus japonicus Gifu root exudates, genes related to Nod factors production were overexpressed in both mutants in comparison to HH103 RifR . Complementation of the nodD2 and nolR mutants provoked a decrease in Nod-factor production, the incapacity to form nitrogen-fixing nodules with L. japonicus Gifu and restored the intercellular way of infection in L. burttii. Thus, the capacity of S. fredii HH103 RifR nodD2 and nolR mutants to infect L. burttii and L. japonicus Gifu by ITs and fix nitrogen L. japonicus Gifu might be correlated with Nod-factor overproduction, although other bacterial symbiotic signals could also be involved.


Assuntos
Lotus/microbiologia , Doenças das Plantas/microbiologia , Sinorhizobium fredii/fisiologia , Especificidade de Hospedeiro , Mutação , Raízes de Plantas/microbiologia , Sinorhizobium fredii/genética , Sinorhizobium fredii/isolamento & purificação
20.
Genes (Basel) ; 9(1)2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29267254

RESUMO

Simultaneous quantification of transcripts of the whole bacterial genome allows the analysis of the global transcriptional response under changing conditions. RNA-seq and microarrays are the most used techniques to measure these transcriptomic changes, and both complement each other in transcriptome profiling. In this review, we exhaustively compiled the symbiosis-related transcriptomic reports (microarrays and RNA sequencing) carried out hitherto in rhizobia. This review is specially focused on transcriptomic changes that takes place when five rhizobial species, Bradyrhizobium japonicum (=diazoefficiens) USDA 110, Rhizobium leguminosarum biovar viciae 3841, Rhizobium tropici CIAT 899, Sinorhizobium (=Ensifer) meliloti 1021 and S. fredii HH103, recognize inducing flavonoids, plant-exuded phenolic compounds that activate the biosynthesis and export of Nod factors (NF) in all analysed rhizobia. Interestingly, our global transcriptomic comparison also indicates that each rhizobial species possesses its own arsenal of molecular weapons accompanying the set of NF in order to establish a successful interaction with host legumes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...